Course Introduction

and some motivation

Mainack Mondal

CS60112
Spring 2025

Today’s Class

® Course logistics
® How to learn security?
® How to (not) nuke your system?

® Epilogue

Instructor

Mainack Mondal: usable security and privacy, system security and privacy,
operationalizing privacy theories

Office: CSE 316

Shiladitya De

SHILADITYA dot DE at
kgpian.iitkgp.ac.in

Nimish Mishra

neelam dot nimish at gmail.com

Sourabh Soumyakanta Das

Dassourabhl@3 at
kgpian.iitkgp.ac.in

Website

https://kronos-192081.github.io/InfoSec-2025/

CSE, IIT Kharagpur

CS60112 - Information and System Security

Spring 2025

4 HOME © COURSE DETAILS [CURRICULUM @ SCHEDULE B READINGS gy PUZZLES

(S60112 - Information and System Security /spring 2025

Course Description

Almost any non-trivial system that exists out there (and that you might build) utilizes some kind of valuable resource, which might
be data, intellectual property or physical resources. In addition to utilizing the resource, the system must also ensure that it
protects the resource from unintended use.

It has been found that the best way to learn how to make a secure system is to know how to break it. In security, the proof of the
pudding quite literally lies in the eating, and therefore any system is only as secure as easy it is to break it.

This course aims to do just this. You can get an idea of what we hope to cover in the curriculum page. A thorough knowledge to C
programming is required. Additionally, it would do you good to have a knack for solving problerns, because we would be solving a

Course Timings

® Credit: 3-0-0

® \Wednesday 10:00 am - 10:55 am
® Thursday 9:00 am - 9:55 am

® Friday 11:00 am - 11:55 am

Mode of Teaching

® (O0ffline lectures

o Please come to class (no recordings)

® (occasional) Pre-recorded lectures for special topics

o We will upload the recorded lectures via MS Teams

® Two exams + Assignments

MS Teams

Link:

https://teams.microsoft.com/1/team/19%3A1TF59SxbMN1F8qcEtIaabt
g4awZyRFj8kfPVO_yfyZftU1%40thread.tacv2/conversations?groupld=
86elaa23-chd8-477b-9h38-2d6f7bb6f5dec&tenantId=71dbb522-5704-
4537-9f25-6ad2dcd4278d

Or
https://shorturl.at/5UUN7

Code: m6axutv

https://teams.microsoft.com/l/team/19%3AlF59SxbMNlF8qcEtIaabtg4wZyRFj8kfPVO_yfyZftU1%40thread.tacv2/conversations?groupId=86e1aa23-cbd8-477b-9b38-2d6f7b6f5dec&tenantId=71dbb522-5704-4537-9f25-6ad2dcd4278d
https://shorturl.at/5UUW7

Course evaluation: Exam

Two exams (55%)
® Syllabus: Everything until that point

® Dates will be in the webpage and announced in academic
calendar

Course evaluation: Assignments

Regular assignments (45%)
® You will learn this course mostly through the assignments
® Assignments will comprise CTF style problems

® Start forming teams! (size <= 3)

Course logilstics

Questions?

Ethical Considerations

https://myozonelayer.com/2016/11/22/the-4th-monkey-do-no-evil/

Ethical Considerations

Don't do evil
If you feel it 1s wrong, it is wrong

Cyber offenses are punishable by law

Use your tools responsibly (“It was an accident, Milord!”
won’t hold up)

Today’s Class

® How to learn security?
® How to (not) nuke your system?

® Epilogue

How to learn Security?

You first learn how to break systems!

How to learn Security?

Then you’d know what to not do!

CTF

Capture the Flag (CTF) is a kind of security exercise, where
the aim is to “break” the system in order to retrieve a piece

of text, called the “flag”.

CTF rules

® The flag must be submitted as-is (no modifications)

® Checking will be automated

® Flags will be randomized on a per-team basis

® Sometimes the flag will have a specified format, such as
“drapeau{<flag-text>}". You need to submit the whole

thing.

Leaderboanrd

® e will have a leaderboard for assignments.
® All points add up.

® Top three teams to get cash prizes!

Topics

® lWeb security

® Reverse Engineering
® Pwning

® Cryptography

® Hardware

Topic 1: Web security

® Perhaps the source tells you something
® Perhaps you can create a url which will lead you to a

secret

® Goal: find vulnerabilities

Toplic 2: Reverse engineering

® Auditing binaries (static, dynamic)

® Understand the binary code / file

® Goal: check if you can find vulnerabilities using that

knowledge

Topic 3: Pwning

® Pwning -> 0Owning
® Find and exploit vulnerabilities to obtain access to a

system

Topic 3: Pwning

® Demo?

Topic 3: Pwning

® https://www.programiz.com/c-programming/online-compiler/

#include <stdio.h>

int main() {
char *xbuf = "iss2024";
puts(buf);

return 0O;

What would it print?

https://www.programiz.com/c-programming/online-compiler/

Topic 3: Pwning

® https://www.programiz.com/c-programming/online-compiler/

#include <stdio.h>

int main() {
char xbuf = "iss2024";
puts(buf);

return 0O;

What would it print? Make it a bit more interesting?

https://www.programiz.com/c-programming/online-compiler/

Topic 4 / 5: Cryptography / HW

® Will cross the bridge when we get there

Topic 4 / 5: Cryptography / HW

break

® Will eress the bridge when we get there

Case study 1: Heartbleed (1/3)
HOLJ THE HEARTBLEED BUG WJORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (6 LETTERS).

ser Meg wants these 6 letters: POTATO.

f)
]

ser Meg wants these 6 letters: POTATO.

OOI .OOI

Case study 1: Heartbleed (2/3)

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "BIRD" (4 LETTERS). User Mo vants
) these 4 letters: BIRD.
(6]

(o)

.o

User Meg wants
Ham... ese 4 letters: BIRD.
\

O

(o)
@"’

Case study 1: Heartbleed (3/3)

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT" (500 LETTERS),

/

ser Meg wants these 500 letters: HAT.

or Meg wants these 500 letters: HAT.

HM‘I_AmrB:[uest

ts mstm: key to NB

35033531 Isabel Wants pages about "
but not too long". User Karen

warrts £0_ hanqe aaumnt password to

1448 dtlsl_process_heartbeat (SSL *s)

1449 {

1450 unsigned char *p = &s->s3->rrec.data[0], *pl;
1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16; /* Use minimum padding */
1454

1455 /* Read type and 7load length first *

1456 hbtype = *p++;

1457 n2s (p, payload);

1458 | pl = p;

1465 if (hbtype == TLS1 HB REQUEST)

1466 {

1467 unsigned char *buffer, *bp;

1470 1
1471

1472

1473 */

1474 ‘ buffer = OPENSSL malloc(l + 2 + payload + padding);‘
1475 bp = buffer;

1476

1477 /* Enter response type, € -
1478 *bp++ = TLS1 HB RESPONSE;

1479 s2n (payload, bp)iy

1480 memcpy (bp, pl, payload);

(a) The Heartbeat buggy C code in ss1\d1_both.c [10].

1448 dtlsl_process_heartbeat (SSL *s)

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1465
1466
1467
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

{

unsigned char *p = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;

unsigned int padding = 16; /* Use minimur

hbtype = *pt++;

Read type and payload lengt irs

n2s (p, payload);

pl

= p;

if

(hbtype == TLS1_HB_REQUEST)
{
unsigned char *buffer, *bp;

buffer = OPENSSL _malloc(l + 2 + payload + padding);
bp = buffer;

response type, length and copy payload *

*bp++ = TLS1 HB RESPONSE;

|

s2n(payload, bp)iy
memcpy (bp, pl, payload);

(a) The Heartbeat buggy C code in ss1\d1_both.c [10].

void *memcpy (void *dst, const void *src, size_t n)

{

size_t i; payload
for (i=0; i<n; i++)
* (char *) dst++ = *(char *) src++;

return dst;
\er e

(b) A naive C implementation of the memcpy () function.

FIGURE 1: Analysis of Heartbleed.

Case study 2: Operation Triangulation (1/2)

Attack chain

A
-

PDF file

&

L o J

Attackers
IMessage
account

Kernel exploit
(JavaScript)

DollarVM
PAC bypass
CVE-2023-32434
CVE-2023-38606

TrueType bplist
font exploit

CVE-2023-41990

ROP/JOP NSExpression NSExpressions

Validator Safari

exploit
CVE-2023-32435
CVE-2023-32434
CVE-2023-38606

Kernel exploit
(Binary)

Validator Malware

Imagent
(cleaner)

Case study 2: Operation Triangulation (2/2)

However apple had hardware protection against writing

random memory addresses

Case study 2: Operation Triangulation (2/2)

However apple had hardware protection
Against writing random memory addresses

Bypassed using undocumented registers
possibly there for debugging

https://securelist.com/operation-triangulation-the-last-
hardware-mystery/111669/

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/

Today’s Class

® How to (not) nuke your system?

® Epilogue

How to nuke your system?

® Run untrusted executables/programs on your system
® Turn off kernel security features
® Stick “sudo” before random commands

® Run “sudo rm -rf --no-preserve-root /"

How to NOT nuke your system?

Ignore all the previous advice and instead:

® Use Docker (has caveats)

® Use virtualization

o VirtualBox

o QEMU

Docker

® |Lightweight “virtualization” software, with the caveat

being it requires root to run (so be careful with mounted

volumes).

® Kernel shared with host with namespace based isolation.

® Install Docker Engine (required).

https://docs.docker.com/engine/install/

VirtualBox

® Full-system virtualization software, with a nice GUI.
® Install from here (required).

® Also install the extension pack and guest additions for

nicer integration.

® We will provide VirtualBox VM files (with extension .ovf)

when required.

https://www.virtualbox.org/wiki/Downloads

QEMU

® Full-system virtualization + architecture emulation

software, CLI only.
® Install from here (required).

® QEMU typically requires a long list of flags and a disk-

image file to run. We will provide both.

® Helpful in emulating non-native ISAs (e.g., MIPS, RISC-V)

https://www.qemu.org/download/

Today’s Class

® Epilogue

